Estimation models with dimensional analysis and linear regressions (student version)

Estimation models with dimensional analysis and linear regressions (student version)#

Written by Marc Budinger (INSA Toulouse), Scott Delbecq (ISAE-SUPAERO) and Félix Pollet (ISAE-SUPAERO), Toulouse, France.

Propellers#

The application chosen for this notebook are UAV propellers. Propellers characteristics can be expressed by \(C_T\) and \(C_P\) coefficients. These coefficients are function of dimensions and conditions of use of propellers. Dimensional analysis and linear regression of suppliers data can be used for the generation of \(C_T\) and \(C_P\) prediction models.

https://raw.githubusercontent.com/SizingLab/sizing_course/main/laboratories/Lab-multirotor/assets/images/apc-mr-props.jpg

Fig. 6 APC MR (Multi-Rotor) propellers#

Dimensional analysis and \(\pi\) numbers#

The propeller performances can be expressed with 2 aerodynamic coefficients:

  • The thrust: \(F = C_{T} \rho_{air} n^2 D^4\)

  • The power: \(P = C_{P} \rho_{air} n^3 D^5 \)

The dimensional analysis and especially the Buckingham \(\pi\) theorem enable to find this results.

Dimensional analysis of the propeller thrust#

The thrust \(F\) of a propeller depends of multiple parameters (geometrical dimensions, air properties, operational points):
\(F=f(\rho_{air},n,D,p,V,\beta_{air})\)
with the parameters express in the following table.

Parameter

M

L

T

Thrust \(T\) [N]

1

1

-2

Mass volumic (Air) \(\rho_{air}\) [kg/m\(^3\)]

1

-3

0

Rotational speed \(n\) [Hz]

0

0

-1

Diameter \(D\) [m]

0

1

0

Pitch \(p\) [m]

0

1

0

Drone speed \(V\) [m/s]

0

1

-1

Bulk modulus (Air) \(\beta_{air}\) [Pa]

1

-1

-2

\(=\pi_0\)

\(=\pi_1\)

\(=\pi_2\)

\(=\pi_3\)

Remark: The dimension of a parameter \(x\) is function of dimensions L, M and T : \([x]=M^aL^bT^c\). The previous table gives the value of \(a\), \(b\) and \(c\) for each parameter of the problem.

Exercise 7

Complete the table with 4 dimensionless \(\pi\) numbers possible for the given problem. Explain the number of dimensionless number.

Parameter

M

L

T

Thrust \(T\) [N]

1

1

-2

Mass volumic (Air) \(\rho_{air}\) [kg/m\(^3\)]

1

-3

0

Rotational speed \(n\) [Hz]

0

0

-1

Diameter \(D\) [m]

0

1

0

Pitch \(p\) [m]

0

1

0

Drone speed \(V\) [m/s]

0

1

-1

Bulk modulus (Air) \(\beta_{air}\) [Pa]

1

-1

-2

\(=\pi_0\)

\(=\pi_1\)

\(=\pi_2\)

\(=\pi_3\)

Effect of the rotational speed#

APC suppliers give complete propeller data for all their propellers. From the file APC_STATIC-data-all-props.csv, we find all static data provided by APC:

import pandas as pd

# Read the .csv file with bearing data
path = "https://raw.githubusercontent.com/SizingLab/sizing_course/main/laboratories/Lab-multirotor/assets/data/"
df = pd.read_csv(path + "APC_STATIC-data-all-props.csv", sep=";")
# Print the head (first lines of the file)
df.head()
LINE COMP TYPE RPM DIAMETER(IN) PITCH(IN) BLADE(nb) THRUST(LBF) POWER(HP) TORQUE(IN.LBF) Cp Ct AREA(m^2) THRUST(N) POWER(W) ANGLE EFF N.D
0 1 1 NaN 1000 10.5 4.5 2 0.03 0.01 0.02 0.03 0.08 0.06 0.1335 7.457 0.43 60.180222 10500.0
1 2 1 NaN 2000 10.5 4.5 2 0.13 0.01 0.08 0.03 0.08 0.06 0.5785 7.457 0.43 60.180222 21000.0
2 3 1 NaN 3000 10.5 4.5 2 0.29 0.01 0.17 0.03 0.08 0.06 1.2905 7.457 0.43 60.180222 31500.0
3 4 1 NaN 4000 10.5 4.5 2 0.52 0.02 0.30 0.03 0.08 0.06 2.3140 14.914 0.43 60.180222 42000.0
4 5 1 NaN 5000 10.5 4.5 2 0.81 0.04 0.47 0.03 0.08 0.06 3.6045 29.828 0.43 60.180222 52500.0

For next steps, we keep only the Multi-Rotor type propellers (MR).

# Data Filtering
dfMR = df[df["TYPE"] == "MR"]
dfMR.head()
LINE COMP TYPE RPM DIAMETER(IN) PITCH(IN) BLADE(nb) THRUST(LBF) POWER(HP) TORQUE(IN.LBF) Cp Ct AREA(m^2) THRUST(N) POWER(W) ANGLE EFF N.D
135 147 8 MR 2000 10.0 4.5 2 0.14 0.01 0.09 0.04 0.11 0.05 0.6230 7.457 0.45 72.772802 20000.0
146 148 8 MR 3000 10.0 4.5 2 0.32 0.01 0.20 0.04 0.11 0.05 1.4240 7.457 0.45 72.772802 30000.0
147 149 8 MR 4000 10.0 4.5 2 0.57 0.02 0.36 0.04 0.11 0.05 2.5365 14.914 0.45 72.772802 40000.0
148 150 8 MR 5000 10.0 4.5 2 0.90 0.04 0.56 0.04 0.11 0.05 4.0050 29.828 0.45 72.772802 50000.0
149 151 8 MR 6000 10.0 4.5 2 1.29 0.08 0.79 0.04 0.11 0.05 5.7405 59.656 0.45 72.772802 60000.0

We plot the \(C_p\) and \(C_t\) for the a 10x4.5 propeller (COMP n° 8 in the previous table). We can notice that these coefficients are constant up to a certain value of speed of rotation. The manufacturer recommends using these propellers for a product speed of rotation x diameter less than a limit (depending on the type of propeller technology) and given here:
Maximum speed(RPM) x prop diameter (inches) = 105,000
for MR type which gives a blade tip speed of 135 m/s.

Question: Explain the origin of this operating limit comes from and the \(\pi\) number that can express it.

# Keep only the component n°8
df8 = dfMR[dfMR["COMP"] == 8]

# Extract forbidden ND product
df8ND = df8[df8["N.D"] > 105000]

import numpy as np
import matplotlib.pyplot as plt

# plot the data
plt.plot(
    df8["RPM"],
    df8["Cp"],
    "bo",
    df8["RPM"],
    df8["Ct"],
    "ro",
)
plt.plot(
    df8ND["RPM"],
    df8ND["Cp"],
    "ko",
    df8ND["RPM"],
    df8ND["Ct"],
    "ko",
)
plt.xlabel("Rotational Speed [RPM]")
plt.ylabel("Cp (blue) and Ct (red)")
plt.grid()
plt.show()
../../_images/e886cb18b8a054bbe6cfa4d170b865b297374203839416ec9fc9290a6a9213b7.png

Linear regression#

For next calculations, we keep only data with following criteria:

  • Type ‘MR’ (Multi-Rotor)

  • Maximum RPM < 105,000/prop diameter (inches)

# Keep only operating points with ND<105000
dfMRND = dfMR[dfMR["N.D"] < 105000]

The APC static data correspond to the hover operational point where the speed V=0. The aerodynamic coefficients are thus only a function of \(p/D\) (called ‘ANGLE’ in the .csv file) dimensionless number.

\(C_t=\frac{F}{\rho_{air} n^2 D^4}=f(\frac{p}{D})\)
\(C_p=\frac{P}{\rho_{air} n^3 D^5}=g(\frac{p}{D})\)

The following code uses the Scikit-learn package in order to set up a \(C_t\) estimator for the static case (\(V=0\) or \(J=0\)).

# Import packages
from sklearn import linear_model
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt


# Data
x = df_MR_ND["ANGLE"].values
y_Ct = df_MR_ND["Ct"].values

# Matrix X and Y
X = x.reshape(-1, 1)

Y_Ct = y_Ct.reshape(-1, 1)

# Create a new object for the linear regression
reg_Ct = linear_model.LinearRegression()

reg_Ct.fit(X, Y_Ct)


# Y vector prediction
Ct_est = reg_Ct.predict(X)

# Ct Parameters
# ----
coef = float(reg_Ct.coef_)
intercept = float(reg_Ct.intercept_)
r2 = r2_score(Y_Ct, Ct_est)


# Plot the data
plt.plot(x, Y_Ct, "o", label="Reference data")
plt.plot(x, Ct_est, "-g", label="Data prediction")
plt.xlabel("Pitch/Diameter  ratio")
plt.ylabel("Ct")
plt.title("Comparison of reference data and regression")
plt.legend()
plt.grid()
plt.show()

print(f"Ct estimation model : Ct = {intercept:.2f} + {coef:.2f} * p/D with R2={r2:.3f}")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[5], line 8
      4 import matplotlib.pyplot as plt
      7 # Data
----> 8 x = df_MR_ND["ANGLE"].values
      9 y_Ct = df_MR_ND["Ct"].values
     11 # Matrix X and Y

NameError: name 'df_MR_ND' is not defined

Exercise 8

Perform a linear regression of \(C_p\) data.

y_Cp =

reg_Cp = 



# Cp Parameters 
# -----
coef = float(reg_Ct.coef_)
intercept = float(reg_Ct.intercept_)
r2 = r2_score(Y_Ct, Ct_est)


# Plot the data 
plt.plot(x, Y_Cp, 'o', label='Reference data')
plt.plot(x, Cp_est, '-g', label='Data prediction')
plt.xlabel('Pitch/Diameter  ratio')
plt.ylabel('Cp')
plt.title('Comparison of reference data and regression')
plt.legend()
plt.grid()
plt.show()

print(f"Cp estimation model : Cp = {intercept:.2f} + {coef:.2f} * p/D with R2={r2:.3f}")
  Cell In[6], line 1
    y_Cp =
          ^
SyntaxError: invalid syntax